THE EFFECT OF ADDED AL2O3 ON THE PROPAGATION BEHAVIOR OF AN Al/CuO NANOSCALE THERMITE W911NF-04-1-0178
نویسندگان
چکیده
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From To)
منابع مشابه
Dependence of flame propagation on pressure and pressurizing gas for an Al / CuO nanoscale thermite W 911 NF - 04 - 1 - 0178
The pressure dependence of flame propagation in an Al/CuO nanoscale thermite was studied. Experiments were performed by loosely packing the Al/CuO mixture in an instrumented burn tube, which was placed in a large volume, constant pressure chamber with optical windows. A high-speed camera was used to take photographic data, and six pressure transducers equally spaced along the length of the burn...
متن کاملاثر افزودنی منیزیم- ویتون بر رفتار حرارتی مخلوطهای ترمیتی Al/nm-CuO
Traditional thermites are generally composed of micron-Al particles. These kinds of thermites usually exhibit poor reactivity characteristics such as a poor heat release and high ignition temperature. In this research, the influence of Mg-Viton as additive on the thermal behavior of Al/CuO systems was verified using thermal analysis techniques. In this paper, thermite mixtures are prepared usin...
متن کاملKinetics of Fe2O3-Al reaction prior to mechanochemical synthesis of Fe3Al-Al2O3 nanocomposite powder using thermal analysis
The effect of ball milling on kinetics of the thermite reaction of 3Fe2O3 + 8Al powder mixture to synthesizeFe3Al-Al2O3 nanocomposite was investigated using differential thermal analysis. A model-free methodwas applied to the non-isothermal differential calorimetry (DSC) data to evaluate the reaction kineticsaccording to the Starink method. The activation energy of the thermit...
متن کاملA comparative study on the dispersion of CuO-ZnO-Al2O3 nanoparticles over HZSM-5 via batch co-precipitation, semibatch co- precipitation and combined co-precipitation-ultrasound methods
A series of CuO-ZnO-Al2O3 nanoparticles over HZSM-5 were successfully prepared using different methods of batch co-precipitation, semibatch co-precipitation and combined co-precipitation-ultrasound. Nitrates of copper, zinc and aluminum were used as precursors, while Na-ZSM-5 was employed as composite support and sodium carbonate was used as precipitant agent. The effects of preparation methods...
متن کاملPRODUCTION OF TiAl/Al2O3 AND TiAl/Ti2AlC/Al2O3 COMPOSITES BY EXPLOSION SYNTHESIS
Thermal explosion mode of combustion synthesis was used to fabricate TiAl-Al2O3 and TiAl-Ti2AlC-Al2O3 composites from elemental powder mixtures of TiO2, Al and C and characterized by XRD and Scanning Electron Microscopy (SEM) coupled with Energy-Dispersive Spectroscopy (EDS). The experimental results showed that thermite reaction of Al with TiO2 caused TiAl-Al2O3 composite formation. By adding ...
متن کامل